US 2005/0132356 Al

also looks for the pTOC (where TOC represents table of
contents) and RomExt variables for later processing. When
pTOC is found, a new .creloc header is created with the
bSrcSection set to the section retrieved from the map file
(adjusted from 1 based to 0 based), the bDstSection set to
254 and a length of four. This header is written to the target
file followed by the 4 byte RVA+Base address information.
For RomExt, the header is the same except that bSrcSection
is set to 253.

[0081] The pTOC/RomExt parsing operation is used
because the operating system Kkernel requires information
about the files in the ROMs, which is provided through the
pTOC variable. This variable needs to be updated by the
DiskImage tool and the update application running on the
device. The information about this variable can only be
retrieved through the MAP file created during the compile
and link phase of a system build. This file is parsed to
retrieve this information.

Jun. 16, 2005

[0082] Certain runtime tools need access to a variable
declared within the kernel data structures. This variable is
named RomExt. This variable needs to be updated by the
DiskImage tool and the Update Application running on the
device. The information about this variable can only be
retrieved through the .MAP file created during the compile
and link phase of a system build, and thus this file is parsed
to retrieve this information.

[0083] In accordance with an aspect of the present inven-
tion, for a package to be self-describing, a device manifest
file 260 (FIG. 2, shown in more detail in FIG. 9) is created
during the packaging process and stored in the package
itself. The device manifest file 260 is used during the
installation process. The format and information contained
in the device manifest file is shown in FIG. 9 and is also
described with this structure definition:

typedef struct __DeviceManifestHeader

const DWORD dwsStructSize;

const DWORD dwPackage Version;
const DWORD dwPrevPkgVersion;

const DWORD dwPackageFlags;
const DWORD dwProcessorID;

const DWORD dwOSVersion;
const DWORD dwPlatformID;
const DWORD dwNameLength;
const DWORD dwNameOffset;
const DWORD dwDependentCount;
const DWORD dwDependentOffset;

const DWORD dwShadowCount;
const DWORD dwShadowOffset;

const DWORD dwFileCount;
const DWORD dwFileListOffset;

const DWORD cbCERTData;
certificate

const DWORD dwCERTDataOffset;

const GUID guidPackage;

// Size of this structure (in bytes)

// for versioning

// Version of this package

/I Version of package that this package

// updates. (0) for Canonical

// package specific identifiers.

// what processor (matches defines in

// winnt.h)

// what version of the operating system
// was this built to.

// what was the target platform.

// length of filename in bytes.

// offset to Friendly name of package

// How many entries in Dependent GUID
/f list.

// How many bytes from the front of the
// file are the dependent GUID structs.

// How many entries in shadow GUID list.
// How many bytes from front of file is
// the array of shadowed package GUIDs.
// How many files are there listed in

// this manifest.

// How many bytes from the front of file
// to the first FileEntry.

// number of bytes of digital

// data

// How many bytes from the front of file
// to the certificate data.

// GUID of this package

}DeviceManifestHeader, *PDeviceManifestHeader;

typedef struct _DependentEntry {

const DWORD size;

const DWORD version;

const GUID guid;
}DependentEntry, *PDependentEntry;
typedef struct _FileEntry {

const DWORD dwNameLength;

const DWORD dwFlags;

const DWORD dwOffset;

const DWORD dwBase; // Base address that file was originally linked with
const DWORD dwFileSize; // Size of the whole file. Not accurate for
// update packages.

}FILEENTRY, *PFILEENTRY;




